
Creating Privacy Policies From Data-Flow
Diagrams

Jens Leicht, Marvin Wagner, and Maritta Heisel

paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Germany {jens.leicht, marvin.wagner, maritta.heisel}@uni-due.de

Abstract. Privacy policies are often used to fulfill the requirement of
transparency of data protection legislation like the General Data Protec-
tion Regulation of the European Union. The privacy policies are used to
describe how the data subject’s data are handled by the data controller.
Domain and legal experts mostly create these policies manually. We pro-
pose a tool-supported method to improve the creation of accurate privacy
policies based on information from the development phase of a system.
During privacy and security threat analyses information about system
behavior is collected in form of data-flow diagrams. These diagrams de-
scribe which data flows from where to where within the system and to
which external actors.
Based on this data-flow information we can create the basic structure of
a privacy policy, already containing the data-flows. The extracted infor-
mation is one of the most important parts of a privacy policy, providing
transparency when data is transferred to external parties.

Keywords: Privacy Policy · Data-Flow Diagram · LINDDUN · Privacy
Impact Analysis · Model-Based.

1 Introduction

Privacy policies are an important tool for service providers to comply with data
protection legislation, like the General Data Protection Regulation of the Euro-
pean Union (GDPR) [5]. The creation of privacy policies is a time consuming
and complex process, which we support by reusing information from the software
development process.

Data-flow diagrams (DFDs) contain important information about the trans-
fer of data in the context of a piece of software or a complete system. Informa-
tion regarding internal data processing is also present in DFDs. This information
covers some of the details that data controllers need to provide to data subjects
via privacy policies. We present an automated method, including tool-support,
which enables data controllers to retrieve relevant privacy policy information
from their DFDs.

DFDs are often created in the context of privacy requirements engineering
or privacy impact analyses, as required by the GDPR. They are also relevant in
security threat modeling approaches, meaning that they are an important model

2 J. Leicht et al.

for privacy- or security critical software. For example, the LINDDUN method [4]
makes use of DFDs to identify privacy threats. Since DFDs are created during the
analysis we can use them with a minimal overhead to extract privacy relevant
information from them, supporting policy authors in the creation of privacy
policies. Updating the privacy policies based on updated DFDs can also improve
the accuracy of the privacy policy when the system design changes.

Our method to derive parts of privacy policies from DFDs uses the Prolog-
Layered Privacy Language (P-LPL) for the created privacy policies. In previous
work we used P-LPL to perform automated GDPR-compliance checks on poli-
cies, providing feedback to the policy authors [12]. These compliance-checks are
part of the Privacy Policy Compliance Guidance (PriPoCoG) framework. This
framework also includes an access control methodology called P2BAC [11] which
supports the enforcement of P-LPL privacy policies. By using P-LPL, we ensure
compatibility with the PriPoCoG-framework.

The paper is structured as follows. We start with relevant background infor-
mation in Section 2. Our concept is presented in Section 3, followed by a look at
our DFD tool in Section 4. Next, we discuss related work in Section 5. Finally,
we close this paper with a conclusion and a look at future work in Section 6.

2 Background

In this section we provide short introductions to the terminology used by the
General Data Protection Regulation of the European Union (GDPR), the LIND-
DUN privacy threat modeling approach, data-flow diagrams, privacy policies,
and the Eclipse Modeling Framework.

2.1 GDPR Terminology

The General Data Protection Regulation (GDPR) [5] introduces some terminol-
ogy in the context of data handling and privacy policies, which we use throughout
the paper to distinguish different roles and actors.

Data Subject is the person whose data are processed by the service provider
(data controller). This is the person that we need to inform about any data
handling, which is mostly done using privacy policies.

Data Controller is the person or legal entity in charge of controlling the data
handling. This can be the service provider itself or a person/entity operating
in the name of the service provider. The data controller specifies the privacy
policy to inform its data subjects.

Data Processor (Data Recipient) is an external entity that processes some
data on behalf of the data controller. Since the data processors receive the
data from the controller, we also call these data recipients in the context of
privacy policies.

Purpose is an explanation describing the reason for which data are processed.
Privacy policies contain purposes explaining to the data subjects why their
data are being handled.

Creating Privacy Policies From Data-Flow Diagrams 3

2.2 LINDDUN

LINDDUN is a privacy threat modeling approach. The name is derived from
the different types of privacy threats considered in the threat analysis: Linkabil-
ity, Identifiability, Non-repudiation, Detectability, Disclosure of information, Un-
awareness (and Unintervenability), Non-compliance. The LINDDUN approach
provides three methods for performing privacy analyses. In this paper we refer-
ence the LINDDUN Pro method, which uses data-flow diagrams to systemati-
cally analyze a system regarding privacy.

The LINDDUN Pro method begins with the definition of DFDs based on
a high-level system description. It provides privacy threat trees and catalogues,
which are used to identify threats in the DFDs. After identifying possible misuse
scenarios and assessing and prioritizing identified risks, the method elicits privacy
requirements and selects appropriate privacy enhancing technologies (see [4] for
further details on the LINDDUN approach).

2.3 Data-Flow Diagrams

Data-flow diagrams (DFDs) are diagrams using five components that describe
which process or external actor has access to which data by modeling data-
flows within and out of the system. DFDs were introduced by DeMarco [3]. The
following elements can be used in DFDs:

Process represents a system-internal process that handles some data. It is vi-
sualized by a circle (cf. Data Bundling in Fig. 1).

Actor represents an entity that may send or receive data. Actors are visualized
by rectangles (cf. Data Processor and Internal Data Miner in Fig. 1).

Storage is used to represent internal data bases, file systems, or files that store
some data they receive from processes or actors. They are visualized dif-
ferently depending on the implementation of the DFD editor. We use the
notation introduced by DeMarco [3], two horizontal lines surrounding the
label of the storage (cf. Database in Fig. 1).

Data-Flow is a directed line between two diagram elements (process, actor, or
storage), which is either annotated with a label or a list of data that flow
along this connection (cf. DF1 to DF5 in Fig. 1). We use labels and provide
tables with mappings from labels to their corresponding lists of data (cf.
right-hand side of Fig. 2). The origin of a data-flow is called source, and the
destination of a data-flow is called sink.

System

Data
Bundling

Database Internal Data
Miner

Data Processor

DF3DF5
DF2

DF4
DF1

DF2

DF4

DF5 DF3

Fig. 1. Exemplary data-flow diagram.

4 J. Leicht et al.

Trust Boundary is a segment of a data-flow diagram surrounded with a dashed
line (cf. System in Fig. 1). This segment can have different meanings, which
should be defined when creating the DFD. We primarily use trust bound-
aries to differentiate internal processes, which are directly controlled by the
data controller, from external actors.

All the above-described elements, except for the trust boundary, can optionally
be marked as out-of-scope. This means that the elements are not considered in
the analysis but might still be helpful in understanding the data-flows. Out-of-
scope elements use a dashed outline/line (cf. Internal Data Miner, DF2, and
DF3 in Fig. 1). We also do not consider these elements when translating a DFD
into a privacy policy.

2.4 Privacy Policies

To comply with the transparency requirements of the GDPR many data con-
trollers make use of privacy policies.

Textual Policies A commonly used form of privacy policies is the textual
form. Data controllers verbally describe how they process the data subject’s
data and explain the reasons behind the processing (purposes). Excerpts from
the Amazon.de privacy policy can be found in Listings 1, 2, and 3 in Section
3.2. We use a more formal and computer processable form of privacy policies as
described below.

P-LPL Policies The Prolog-Layered Privacy Language (P-LPL) [12] is a deriva-
tive of the Layered Privacy Language (LPL) [6] and provides a computer pro-
cessable form for expressing GDPR-compliant privacy policies. P-LPL is part
of the Privacy Policy Compliance Guidance (PriPoCoG)-framework [12], which
provides GDPR-compliance checks for P-LPL policies, as well as access control
based on these policies using P2BAC [11].

P-LPL policies use a hierarchical structure to arrange processing purposes,
which we make use of as described in Section 3.5. All elements of a P-LPL policy
have titles and descriptions that are used for the policy representation towards
the data subjects.

3 Methodology

In this section we present the general concept and provide a detailed explanation
of the generation of privacy policy information from data-flow diagrams.

3.1 Concept

Creating privacy policies from DFDs is achieved by performing the following
steps:

Creating Privacy Policies From Data-Flow Diagrams 5

1. Creation of DFDs of the system behavior using our tool (cf. Sec-
tion 4). This can be done as part of privacy or security threat analyses, e.g.,
using LINDDUN [4] or STRIDE [9], or independently of any threat modeling
technique. During privacy impact analyses (PIAs), DFDs also play an im-
portant role. The DFDs created in this step also help document the system
behavior. If the DFDs have shared components, for example, recurring ac-
tors, these shared components need to be imported from the main model (cf.
Section 4) to prevent duplicate elements representing the same entity. Dur-
ing this step it is important to not introduce ambiguities in the DFDs, e.g.,
the term address can have many different interpretations of what data are
included in an address. Travis Breaux’s and Mitra Bokaei-Hosseini’s Ontol-
ogy of Personal Information1 (OPI) shows that these ambiguities can occur
for many terms used in data flows and privacy policies. The solution is to
name each data element as precisely as possible. Alternatively, a mapping
table could be introduced revealing what data is contained in a specific term.
Ambiguities in the DFDs result in the same ambiguities in the privacy policy.

2. Importing combined model into privacy policy editor. All DFDs
created within a project using our tool share a single model. Hence, they
can be visualized in a single Privacy Data-Flow Diagram representing all
data-flows of the system. That diagram can be imported into our privacy
policy editor (cf. Section 3.6).

3. Creation of intermediate privacy policy. The editor extracts all avail-
able information from the diagram, as explained in Section 3.5 below. Since
the extracted information is not sufficient to create a complete privacy policy,
we call it an intermediate privacy policy.

4. Manually completing the privacy policy. The policy author can now
manually edit the intermediate policy, entering further details. The final
output is a P-LPL policy that can be checked for GDPR-compliance using
PriPoCoG [12].

Deriving the main components of a privacy policy from DFDs modeling the
system behavior has the following benefits: 1. The complexity of the task of
creating a privacy policy is reduced. 2. The resulting policy can be checked
for GDPR-compliance using the PriPoCoG-framework. 3. The resulting policy
accurately describes the actual system behavior. The chance of discrepancies
between policy and system behavior is reduced. 4. If the system is adapted and
the DFDs are updated according to the new system behavior, the policy can be
updated, too. Thus, further improving the accuracy of the policy.

In the security engineering context (e.g., STRIDE [9]) DFDs become more
complex compared to DFDs from the privacy engineering context (e.g., LIND-
DUN). This increased complexity leads to more detailed, and therefore more
complex, privacy policies. However, the use of a purpose hierarchy, as described
in Section 3.5 (Step 4) below, increases the comprehensibility of such detailed
privacy policies. The top-level purposes give a general overview over the data

1 https://opi.cs.cmu.edu/show/address

https://opi.cs.cmu.edu/show/address

6 J. Leicht et al.

processed by a data controller, whereas the sub-purposes can provide more de-
tails to the interested reader.

In the future, layered DFDs could be used to create a more abstract top-level
DFD that is more suitable for the privacy policy creation. The details needed
in the security context could then be placed in lower-level DFDs, refining the
processes presented in the top-level DFD.

In the following we introduce a running example which we use as a guide
through the process of extracting privacy policy-relevant information from DFDs.

3.2 Running Example

As a running example we use two sections of the Amazon.de [1] privacy policy
and create a DFD from the described behavior. In general, the DFDs for our
approach will not be created based on existing privacy policies, but instead from
actual system behavior. We just make use of an existing privacy policy, as we have
no insights into the actual system behavior of the Amazon.de systems. In our
running example we focus on the delivery of products, as well as the processing
of payments. All other mentioned processing purposes will not be considered in
this paper. Listing 1 shows how Amazon.de describes the purposes for which they
process personal data. In Listing 2 we can see in which cases the personal data
of the data subject are transferred to third-party service providers. Amazon also
receives updated personal data from some third-party service providers, e.g., a
corrected delivery address from delivery partners (cf. Listing 3).

‘‘ Purchase and delivery of products and services . We use your personal
information to take and handle orders, deliver products and services ,
process payments, and communicate with you about orders, products and
services , and promotional offers .’’

Listing 1. Excerpt from the Amazon.de privacy policy (purposes) [1].

‘‘ Third party service providers : We employ other companies and individuals
to perform functions on our behalf. Examples include fulfilling orders for
products or services , delivering packages, [...], processing payments [...].’’

Listing 2. Excerpt from the Amazon.de privacy policy (data processors) [1].

‘‘ updated delivery and address information from our carriers or other third
parties , which we use to correct our records and deliver your next purchase
or communication more easily’’

Listing 3. Excerpt from the Amazon.de privacy policy (data from other sources) [1].

Since the Amazon.de privacy policy is not very detailed in stating which data are
transferred to which third-party service provider, we assume that the following
data are transferred for the purposes product delivery and payment processing :

Creating Privacy Policies From Data-Flow Diagrams 7

– product delivery
• Name
• Address
• Phone Number
• E-Mail Address

– payment processing
• Amount due
• Name
• Address
• Bank Account Number

A data-flow diagram for this scenario is shown in Fig. 2. This diagram differs
from a normal DFD because it was created using our DFD-tool and already
contains annotations, which we explain in further detail in Sections 3.4 and 4.3
below. Without annotations the actor Data Subject and its related data-flows
would not be greyed-out. The storages Orders and Transactions are greyed-out
because the diagram shown is a PrivacyDataFlowDiagram (cf. Section 4.3).

The data subject places an order by providing all necessary information:
Order(the items ordered), Name, Address, Phone Number, Mail Address, and
Bank Account Number (DF1). Order details are processed by Order Processing
and stored in Orders (DF2 + DF3).

The Payment Processing process receives Order, Name, Address, and Bank
Account Number from Order Processing (DF7) and forwards the Amount due
(extracted from Order), Name, Address, and Bank Account Number to the Bank
(DF8). Transaction details of the bank transfer are returned to the Payment Pro-
cessing process and used to decide whether the product delivery should be trig-
gered (DF9). All transaction-related information (Order, Name, Address, Bank
Account Number, and Transaction Details are stored in Transactions (DF10 +
DF11). Transaction Details, Name, and Address will be forwarded to the Tax
Authorities if required (DF13).

The Transaction Confirmation (based on the success of a transaction) is in-
ternally (i.e., inside the Amazon.de trust boundary) forwarded to the process
Order Processing (DF12) and from there stored in Orders (DF2 + DF3). Or-
der Processing forwards Name, Address, Phone Number, and E-Mail Address

Combined DFD

Amazon.de

Order
Processing

Payment
Processing

Orders Transactions

Data Subject Parcel Service Bank Tax Authority

DF3

DF9DF5

DF12

DF7

DF8

DF10DF11

DF4

DF2

DF13DF6DF1DF1

DF2 DF3

DF4 DF5DF6

DF7

DF8DF9

DF10DF11

DF12

DF13

DF and Data
DF1 | Order, Name, Address, Phone Number, E-Mail Address, Bank Account
Number

DF2 | Order, Name, Address, Phone Number, E-Mail Address, Delivery Status,
Transaction Confirmation
DF3 | Order, Name, Address, Phone Number, E-Mail Address, Delivery Status,
Transaction Confirmation

DF4 | Name, Address, Phone Number, E-Mail Address
DF5 | Delivery Status, Address, Name

DF6 | Order History, Payment Status, Delivery Status
DF7 | Order, Name, Address, Bank Account Number

DF8 | Amount, Name, Address, Bank Account Number
DF9 | Transaction Details

DF10 | Order, Name, Address, Bank Account Number, Transaction Details
DF11 | Order, Name, Address, Bank Account Number, Transaction Details

DF12 | Order, Transaction Confirmation
DF13 | Name, Address, Transaction Details

Fig. 2. left: Combined data-flow diagram for our running example, data subject and
storages are greyed-out based on annotations (cf. Section 3.4); right: Data-flows and
their corresponding data.

8 J. Leicht et al.

to the Parcel Service for product delivery (DF4). The Parcel Service returns
the current delivery status, as well as a potentially updated address and name
(cf. Listing 3) to the Order Processing process (DF5), which is then stored in
Orders (DF2 + DF3). The Data Subject, receives an Order History (based on
the past orders stored in Orders), a Payment Status (based on the Transaction
Confirmation), and the Delivery Status (DF6).

3.3 Validation Conditions

To reduce the number of errors that can happen during the process of defining
DFDs as well as extracting privacy policy information from such diagrams, we de-
fine validation conditions. These conditions can be checked manually, especially
when drawing DFDs by hand. However, we also implement these validation con-
ditions in our DFD-tool, as described in Section 4.4, so that they can be checked
by the tool when creating the DFDs.

We identified the following 14 validation conditions. Some of these conditions
are relevant for data-flow diagrams in general, and some are introduced to be able
to transform data-flow diagrams into privacy policies. Conditions 1 to 10 apply
to data-flow diagrams in general. Conditions 11 to 14 are specific to Privacy
Data-Flow Diagrams.

General Data-Flow Diagrams:
1. Each data-flow needs a source and a sink.
2. Each data-flow needs at least one assigned data-element.
3. Processes need to be located inside a trust boundary.
4. Storages need to be located inside a trust boundary.
5. Source and sink of a data-flow must not both be of type storage.
6. Source and sink of a data-flow must not both be of type actor.
7. Source and sink of a data-flow need to be different.
8. An actor must be source or sink of at least one data-flow.
9. An element cannot be inside more than one trust boundary.
10. Elements cannot be inside and outside a trust boundary at the same time.

Privacy Data-Flow Diagrams:
11. Each data-element needs to be referenced by at least one data-flow.
12. Each data-flow diagram needs at least one process.
13. Each data-flow diagram needs at most one data subject.
14. When the combined data-flow diagram contains more than one trust bound-

ary, only one of the trust boundaries can be considered as the data controller.

Condition 11 ensures that the created privacy policy does not contain unnec-
essary information about data that is not actually flowing anywhere. Adding
such unnecessary information would clutter the resulting privacy policy, reducing
transparency towards the data subject. Condition 12 ensures that information
from the data-flow diagram can be combined into a purpose inside the privacy
policy (cf. Section 3.5). A process is also required for a data-flow analysis to be

Creating Privacy Policies From Data-Flow Diagrams 9

sensible, as data-flows without a process (directly between actors) will not be of
interest for the party conducting the analysis. Such a data-flow would only be
relevant for a data-flow analysis conducted by the actors themselves. Condition
13 assures that the data subject used in the diagrams represents a single data
subject, which is congruent with a privacy policy that represents all necessary
information about the data of the single data subject reading the policy. Finally,
condition 14 assures that trust boundaries, used for example for groups of ex-
ternal actors, are not considered to be part of the system. This means that the
combined Privacy DFD has at most one trust boundary representing the data
controller’s system. Any additional trust boundary will be considered external.

3.4 Annotated Data-Flow Diagram

In addition to creating the data-flow diagrams using our tool, privacy policy
authors will need to annotate the data-flow diagrams. The overhead, however,
is very small as they only need to mark the one actor representing the data
subject, as well as the trust boundary that represents the data controller. It is
also possible that the DFDs contain no actor representing the data subject. In
this case only the trust boundary of the data controller needs to be annotated
in the DFDs.

Optionally, authors can add descriptions for each element in the diagram.
These descriptions are used to create user-friendly representations of the ele-
ments inside the privacy policy. For the basic privacy policy elements: purpose,
data, and data recipient the descriptions are used directly to describe these el-
ements. Data-flows do not have a direct representation in the privacy policy.
Hence, we combine all data-flow descriptions in the description of the purpose,
which is part of the policy.

Further information that may be required for a GDPR-compliant privacy
policy needs to be entered manually using our work-in-progress privacy policy
editor, which we describe in more detail in Section 3.6 below. Missing information
includes, for example, the rights of the data subject or information about data
controllers or data protection officers. An alternative way of entering some of the
additional information could be to further annotate the diagrams. However, we
expect a better usability when entering the data using the policy editor, instead
of further annotating the diagrams.

3.5 Intermediate Policy

The combined data-flow diagram (cf. Step 2 in Section 3.1 and Section 4.3) is
exported from our DFD-tool as an XML-file. This file is then imported into our
privacy policy editor (cf. Section 3.6) which extracts all available information
from the XML-file and creates the corresponding privacy policy elements as
described below.

Table 1 provides an overview of the processes shown in Fig. 2, their re-
lated data-flows, and the data included, as well as the actors involved in these
data-flows. The intermediate policy (listed in Table 2) is created based on the

10 J. Leicht et al.

Table 1. Summary of the elements of the DFD shown in Fig. 2.

Process Data-Flows Data Actors

Order Processing DF1-DF7, DF12 Order, Name, Address, Phone
Number, E-Mail Address, Bank
Account Number, Delivery Sta-
tus, Order History, Payment
Status, Transaction Confirma-
tion

Parcel Service

Payment Processing DF7-DF13 Order, Name, Address, Bank Bank,
Account Number, Amount,
Transaction Details, Transac-
tion Confirmation

Tax Authority

information shown in Table 1 using the following procedure:

1. For each data-element used in the combined DFD, a corresponding element
is created in the policy editor. If source or sink of all data-flows containing
a data-element are marked as out-of-scope, the data-element will not be
translated into the privacy policy. The same applies if all relevant data-flows
themselves are marked out-of-scope. The name of the data-element as well
as the optional description annotation are used to pre-fill the editor with
additional information about the element.

2. For each actor that is either sink or source of a data-flow from or to a process
inside the data controller (annotated trust boundary, cf. Section 3.4), a data
recipient element is created in the policy editor. Actors that are marked as
out-of-scope and the data subject are not translated into the policy.

3. A purpose element is created for each pair of process and actor that are
connected via a data-flow. Again, data-flows marked out-of-scope and to or
from the data subject are not considered here. Processes, that do not have
any external actor as data recipient, are still translated to corresponding
purposes in the policy. These purposes describe data processing by the data
controller and are therefore also relevant for a privacy policy. The data-
elements of all incoming and outgoing data-flows of such processes are added
to the resulting purpose.

4. If a process is connected to multiple actors, an additional purpose is created,
that combines all purposes created for this process in the previous step.
The purposes created during this step of the translation are arranged in a
purpose hierarchy, which, for our running example, is shown as a screenshot
from our privacy policy editor in Fig. 3. For the process Payment Processing
two purposes are created (Bank and Tax Authority) and combined in the
main Payment Processing purpose.

5. The descriptions of the purposes, if supplied in the annotated DFDs (cf. 3.4),
are created based on the description of the process, as well as the descriptions
of the data-flows from and to the process. Listings 4 and 5 show the exem-
plary descriptions of DF8 and DF9. Combined with the description of the

Creating Privacy Policies From Data-Flow Diagrams 11

Fig. 3. Purpose hierarchy of the intermediate policy.

Payment Processing process, the resulting description of the corresponding
child purpose Payment Processing (Bank) is shown in Listing 6.

6. For hierarchical purposes, the descriptions are a concatenation of the de-
scriptions of the child purposes. Listing 7 shows the description of the parent
purpose Payment Processing combining Listing 6 with the description of the
second child purpose Payment Processing (Tax Authority).

7. Finally, data and data recipients are assigned to the corresponding purposes.
This assignment is based on all data-flows between a process and an actor.
The hierarchical purposes that combine multiple purposes are assigned with
the union of data-elements and data recipients of their child purposes.

This translation procedure is supported by our DFD-tool as well as our privacy
policy editor. However, it can also be applied to any DFD and any form of
privacy policy, e.g., when manually translating DFDs into a policy.

‘‘ Data are transferred to our bank to process the payment for your order .’’

Listing 4. Exemplary description of DF8.

‘‘ The bank gives us access to transaction details after a payment has been
processed .’’

Listing 5. Exemplary description of DF9.

‘‘We process your data in order to carry out financial transactions for the
payment of your orders. Data are transferred to our bank to process the payment
for your order. The bank gives us access to transaction details after a payment
has been processed .’’

Listing 6. Exemplary description of the child purpose Payment Processing (Bank).

‘‘We process your data in order to carry out financial transactions for the
payment of your orders. Data are transferred to our bank to process the payment
for your order. The bank gives us access to transaction details after a payment
has been processed. We forward your data to the tax authority as required by
law .’’

Listing 7. Exemplary description of the parent purpose Payment Processing.

12 J. Leicht et al.

Table 2. Policy elements created from the DFD shown in Fig. 2 (cf. Table 1).

Purpose Data Data Sub-purposes
Recipients

Order Processing Order, Name, Address,
Phone Number, E-Mail
Address, Bank Account
Number, Delivery Status,
Order History, Payment
Status, Transaction Confir-
mation

Parcel Service -

Payment Processing Order, Name, Address, Bank Bank, Payment Processing
Account Number, Amount, Tax (Bank),
Transaction Details, Authority Payment Processing
Transaction Confirmation (Tax Authority)

Payment Processing Amount, Name, Address, Bank -
(Bank) Bank Account Number,

Transaction Details

Payment Processing Name, Address Tax -
(Tax Authority) Transaction Details Authority

Table 2 shows for each purpose created what data are used for this purpose and
who the data recipients are. Additionally, for the purpose Payment Processing
its sub-purposes Payment Processing (Bank) and Payment Processing (Tax Au-
thority) are shown. The parent purpose contains all data-elements, as well as all
data recipients of its children. We explain how this information is used in the
privacy policy editor in Section 3.6 below.

3.6 Privacy Policy Editor

The intermediate policy discussed in the previous section can be used in our
privacy policy editor to create a GDPR-compliant privacy policy. The policy
author can load the intermediate policy to fill parts of the privacy policy with
the information gathered from the DFDs. An excerpt from the main page of our
currently work-in-progress policy editor is shown in Fig. 4. The editor highlights
the data, data recipients, and purpose tiles in red, because these contain some
of the information from the intermediate policy, but there is still information
missing for a complete privacy policy.

The overall policy additionally requires the following information:

– essential policy information (e.g., the language used or a reference to a tex-
tual privacy policy),

– information about the data controllers,
– information about data protection officers,
– a list of rights that the controller grants the data subjects,
– and information regarding the competent supervisory authority.

Creating Privacy Policies From Data-Flow Diagrams 13

Fig. 4. Excerpt from the main page of the PriPoCoG privacy policy editor pre-filled
with information from the DFD shown in Fig. 2.

The data-elements imported from the DFDs are missing the following informa-
tion: data type, sensitivity level (e.g., explicit, sensitive, or non-sensitive). The
data recipients are missing information regarding their classification as either a
person, legal entity, or public authority. Regarding the purposes, authors need
to decide whether the data subject must accept the purpose, or whether this is
optional. Purposes additionally lack information regarding data retention and
the legal bases on which a purpose is based.

Although the above-mentioned information needs to be added manually, most
of the policy is filled with the information from the DFDs. The purposes and
their corresponding data and data recipients are the largest part of the privacy
policy. The proportion between the pre-filled elements and the data to be added
manually depends on the size of the system under consideration.

Once the policy author enters the missing information manually the tiles will
turn green to show that these parts of the privacy policy are complete. The
grey tiles indicate that no information has yet been entered in these categories.
When sufficient information is entered, the policy can be checked for GDPR-
compliance. We explain how we perform compliance-checks on the privacy policy
in [12].

4 Tool Support

To help users of our approach create DFDs, we provide a graphical editor. It is
based on the Eclipse Modeling Framework (EMF)2 and Sirius3. Sirius builds on

2 https://www.eclipse.org/modeling/emf/
3 https://www.eclipse.org/sirius/

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/sirius/

14 J. Leicht et al.

EMF and the Acceleo Query Language (AQL). AQL is a specification language
similar to the Object Constraint Language (OCL)4. The elements of an EMF
metamodel can be filtered, created, deleted, and manipulated with AQL. In the
following we describe the main elements of the metamodel, as well as the different
graphical representations and the implementation of the validation conditions.

4.1 Metamodel

Using EMF we defined the metamodel shown in Fig. 5, which defines all elements
of a data-flow diagram. To reduce the complexity of the metamodel for this
paper, we removed two abstract classes that are used to introduce some shared
attributes. Each element of the model has a name and a description (not shown
in Fig. 5 to reduce complexity).

Our main element is DataFlowModel. It contains all other elements. Further-
more, we have the elements TrustBoundary, Actor, Storage, Data, DataFlow,
Process, and DataFlowDiagram, which are contained in the element DataFlow-
Model. The elements: Actor, Process, Storage, and DataFlow have a boolean
attribute OutOfScope(not shown in Fig. 5 to reduce complexity), because some
elements may not be relevant or out-of-scope for a data-flow analysis.

In addition to all standard elements of a DFD, we added a boolean attribute
to the Actor element: dataSubject. This attribute is used to exclude actors that

4 https://www.omg.org/spec/OCL/

DataFlowModel

Actor

dataSubject :
EBoolean = false

Process

Storage

TrustBoundary

dataController :
EBoolean = false

DataFlow

DataFlowElement

Data

DataFlowDiagram

[0..*] actors [0..*] processes

[0..*] storages

[0..*] trustBoundaries

[0..*] processes

[0..*] actors

[0..*] storages
[0..*] dataFlows

[1..1] sourceDataFlow

[1..1] sinkDataFlow

[0..*] data

[1..*] data

[0..*] dataFlowDiagrams

[0..*] dataFlows

[0..*] trustboundaries

[0..*] process

[0..*] storage

[0..*] actor

Fig. 5. EMF-metamodel describing all elements of a data-flow diagram and their rela-
tions.

https://www.omg.org/spec/OCL/

Creating Privacy Policies From Data-Flow Diagrams 15

represent the data subject from further processing of the diagram. The data sub-
ject is not a data recipient in the context of a privacy policy; hence, we exclude
it from our translation process. Additionally, we added a boolean attribute data-
Controller to the TrustBoundary. We use this attribute to highlight the trust
boundary of the data controller. For multiple DFDs, we decide that Actor, Stor-
age, DataFlow, and Process can be assigned to the element DataFlowDiagram.
Thus, we can obtain a better overview by showing smaller DFDs that together
form the whole model (cf. Fig. 7 vs. Fig. 2).

Similarly, we assign elements to the TrustBoundary, because in this way
we can define which elements are inside the trust boundary. A DataFlow can
take place between two DataFlowElements which can be Storage, Process, or
Actor and mandatorily needs a sourceDataFlow and a sinkDataFlow. Addition-
ally, DataFlow must be assigned at least one or more elements of Data. These
restrictions, requiring at least one element are highlighted in bold in Fig. 5.

The metamodel is part of the editor’s back-end and is not visible to the user
of the tool.

4.2 Model Instance

An instance of the metamodel is a data-flow model. It contains instantiated
metamodel elements from a concrete data-flow model. The model instance can
be created and modified via graphical representations, described below. Addi-
tionally, the editor allows storing the results of the modeling process persistently.

The tree view of the model instance from our running example is shown in
Fig. 6. It contains all elements of the model. The tree view of the model instance
is not comprehensible for the user. Therefore, we provide a graphical editor.

A data-flow model can contain multiple DFDs, which can have shared ele-
ments. These shared elements occur only once in the data-flow model, but are
referenced by each DFD they appear in. An example of such shared elements are

Fig. 6. Tree view of the model instance from our running example (cf. Fig. 2).

16 J. Leicht et al.

the processes and the data-flows DF7 and DF12 in Fig. 7, which only appear
once in the combined DFD (cf. Fig. 2) and the tree view instance in Fig. 6.

The model instances are part of the backend, too. The user of the tool only
interacts with the graphical representations, described in the following.

4.3 Graphical Representations

We have three different graphical representations of the model instance. All three
representations share the fact that trust boundaries, which are marked as data
controllers, are highlighted in red. Trust boundaries that do not represent the
data controller are drawn in black.

We have two graphical representations for DFDs called DataFlowDiagram
and PrivacyDataFlowDiagram.

Both diagrams are almost equal. The DataFlowDiagram represents a selected
part of the entire model. Only the elements which are assigned to the DataFlow-
Diagram are shown. This gives the user a clear overview. This representation is
used for general purpose data-flow diagrams. The DFDs in Fig. 7 are created
using the DataFlowDiagram representation.

The PrivacyDataFlowDiagram has two special properties compared to the
DFD representation. We grey-out all storages, the data subject, and all data-
flows which have storages or the data subject as source or sink. They are greyed-
out because they are not relevant for the translation into a privacy policy.

Additionally, we have a main diagram called DataFlowMainDiagram where
all elements are represented at once in a combined DFD. The represented ele-
ments are the union of all elements from the separate DFDs. This main diagram
gives a complete overview of the entire model. However, the large number of ele-
ments can be overwhelming for the user. Hence, we recommend defining separate
DFDs first. The DataFlowMainDiagram representation uses a PrivacyDataFlow-
Diagram representation for the combined model. The DFD shown in Fig. 2 is

Data Subject Parcel Service

Amazon.de

Order
Processing

Payment
Processing

Orders

DF7

DF2 DF3

DF12

DF1

DF2 DF3

DF4 DF5DF6

DF7

DF12

Bank Tax Authority

Amazon.de

Order
Processing

Payment
Processing

Transactions

DF12

DF10

DF7

DF11

DF7

DF8DF9

DF10DF11

DF12

DF13

Fig. 7. left: Data-flow diagram for Order Processing ; right: Data-flow diagram for Pay-
ment Processing.

Creating Privacy Policies From Data-Flow Diagrams 17

the DataFlowMainDiagram combining the two separate DFDs for Order Pro-
cessing and Payment Processing shown in Fig. 7. The combined diagram is used
for exporting the DFDs to the privacy policy editor (cf. Section 3.6).

4.4 Implemented Validation Conditions (VCs)

The validation conditions of section 3.3 are implemented in the editor using
AQL. They are checked automatically after a trigger of the user.

Listing 8 shows the AQL implementation of VC 14 as an example: “When the
combined data-flow diagram contains more than one trust boundary, only one of
the trust boundaries can be considered as the data controller.”

aq l : s e l f . t rustBoundar ies=>s i z e ()>1 implies s e l f .
t rustBoundar ies=>one (t | t . da taCont ro l l e r=true)

Listing 8. AQL implementation of VC 14.

The context of the VC is the element DataFlowModel (see Fig. 5). Therefore,
self is of type DataFlowModel. The first part self.trustBoundaries− >size()>1
is evaluated to true or false. If we have more than one trust boundary in our
model, it is evaluated to true. If the first part is true, the second part after
the implies self.trustBoundaries − > one(t|t.dataController=true) needs to be
true. This is the case if the set of all trust boundaries contains exactly one trust
boundary where the attribute dataController is set to true.

The other VCs are implemented similarly or covered by the constraints spec-
ified in the metamodel.

5 Related Work

Robles-González et al. propose a framework extending LINDDUN, specifically
targeting identification and authentication processes [13]. We do not extend
the privacy threat analysis, but instead make use of the documentation cre-
ated during this process. Even extended/derived frameworks like the one of
Robles-González et al. are compatible with our proposed method, as long as
they continue to use data-flow diagrams for their privacy analyses.

Before LINDDUN was proposed in the privacy context, Microsoft created
STRIDE in the context of security threat modeling [9]. This security threat
model also uses data-flow diagrams and hence is also compatible with our method.
Since STRIDE focusses on security instead of privacy, the resulting privacy pol-
icy may be lacking some data transfers, that may be identified using LINDDUN.
However, using DFDs from STRIDE will still support privacy policy authors
when defining a policy, as many data-flows will be covered by the STRIDE
DFDs, preparing large parts of the privacy policy.

Since we support privacy policy authors in the process of creating privacy
policies, by providing a tool-supported method to extract policy information
from DFDs, we also want to mention the work of Hjerppe et al. [7]. They provide

18 J. Leicht et al.

a method for automatically creating LPL-policies from annotated source code.
Depending on the size of a project it might be more viable to use the annotated
source code to generate the privacy policy. However, in projects where a privacy
impact analysis or privacy threat modeling using LINDDUN is applied, our
method transforms knowledge created during these analyses into useful content
for a privacy policy.

Kunz et al. also use a model-based approach in the privacy context [10]. They
propose Privacy Property Graphs for privacy threat analyses. These privacy
property graphs are created from static code analysis and are enriched data-
flow diagrams. This provides the potential for an adapted version of our work
presented in this paper. This adaptation could take the automatically generated
privacy property graphs as input to prepare the privacy policies with less manual
overhead.

Wang et al. analyzed 120 android apps concerning discrepancies between
privacy policies and app behavior [14]. They identified 21 strong and 18 weak
violations of the provided privacy policies. This means that 39 apps did not
behave as described in their accompanying privacy policies. Using our approach
and DFDs modeling the app behavior these inaccuracies in the policies could be
prevented.

With the same goal Andow et al. proposed a different approach for the anal-
ysis of such discrepancies [2]. They also take the data recipient into account
when verifying the behavior of the application. With this detail considered they
analyzed 13796 applications and came to the conclusion that 42.4% of these
applications had discrepancies between app behavior and privacy policy.

GDPR-compliance in systems and privacy policies is also considered an im-
portant topic by the European Union. It, for example, funded a recent research
project for the assessment of GDPR-compliance. Completed in 2021, the DE-
FeND5 project supports data controllers in the planning, design, and operational
phases.

6 Conclusion & Future Work

Conclusion We presented our tool-supported method for the extraction of
privacy policy information from data-flow diagrams. This allows policy authors
to reuse information from privacy and security threat analyses when creating
privacy policies for their services.

Our method and tool improve the creation of privacy policies by automati-
cally extracting information regarding data-flows from these diagrams and pro-
viding this information as purposes and data recipients in our privacy policy
editor. DFDs from the security engineering context can be more complex com-
pared to the ones from the LINDDUN approach. Using a purpose hierarchy, we
can combine the detailed information contained in these DFDs into more general
purposes, which better fit a privacy policy.

5 https://www.defendproject.eu/

https://www.defendproject.eu/

Creating Privacy Policies From Data-Flow Diagrams 19

Although the policy author still needs to enter some information manually,
a large part of the privacy policy can be pre-filled using our approach. The
definition of purposes and their data and data recipients takes up a large part
of the policy definition process. This time-consuming task is made easier by
importing the information from the DFDs.

Additionally, extracting this information from models representing the sys-
tem behavior can improve the accuracy of the privacy policies. When the policies
are not created independently of the system they more closely represent the ac-
tual system behavior.

Future Work The approach we presented in this paper can be extended to
support layered DFDs. This could further improve the purpose hierarchy created
from the DFDs.

The integration of further privacy-related methods into the privacy policy
creation process is a promising task for the future. The aim is to extract as much
policy information as possible from work that has already been done during the
development of a system. Thus, we reduce the overhead occurring in the privacy
policy creation process.

Another goal for the future is the combination of different automated privacy
policy creation approaches, like the one by Hjerppe et al. [7] with our DFD-
approach. Combining different approaches could further reduce the overhead
needed for the creation of privacy policies.

Besides the approach by Hjerppe et al., privacy property graphs (PPGs)
by Kunz et al. [10] could also be used to extract privacy policy information.
This could be achieved by adapting the methodology presented in this paper
to take PPGs as input. This approach could potentially increase the amount
of information extracted from the diagrams, as PPGs are enriched data-flow
diagrams that contain additional information, which may be relevant for privacy
policies.

Since DFDs are not part of UML6 an extension of UML, standardizing DFDs,
would be beneficial for future developments around DFDs. The UMLsec exten-
sion by Jürjens [8] is a good example for the benefits of a standardized notation.

Acknowledgement We thank Julien Lukasewycz for his useful input during
the development of our approach, as well as writing this paper. We further thank
the reviewers of this paper for their valuable input regarding the paper itself as
well as the approach we presented.

References

1. Amazon Europe Core: Amazon.de privacy policy (2022), https://www.amazon.de/
gp/help/customer/display.html?nodeId=201909010&language=en_GB, accessed
2023-07-02

6 The Unified Modeling Language: https://www.omg.org/spec/UML/

https://www.amazon.de/gp/help/customer/display.html?nodeId=201909010&language=en_GB
https://www.amazon.de/gp/help/customer/display.html?nodeId=201909010&language=en_GB
https://www.omg.org/spec/UML/

20 J. Leicht et al.

2. Andow, B., Mahmud, S.Y., Whitaker, J., Enck, W., Reaves, B., Singh, K., Egelman,
S.: Actions speak louder than words:Entity-Sensitive privacy policy and data flow
analysis with PoliCheck. In: 29th USENIX Security Symposium (USENIX Security
20). pp. 985–1002 (2020)

3. DeMarco, T.: Structure Analysis and System Specification, book section
Chapter 9, pp. 255–288. Springer Berlin Heidelberg, Berlin, Heidelberg
(1979). https://doi.org/10.1007/978-3-642-48354-7 9, https://doi.org/10.1007/
978-3-642-48354-7_9

4. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A pri-
vacy threat analysis framework: supporting the elicitation and fulfillment
of privacy requirements. Requirements Engineering 16(1), 3–32 (2011).
https://doi.org/10.1007/s00766-010-0115-7

5. European Parliament, Council of the European Union: Regulation 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Pro-
tection Regulation). Official Journal of the European Union L119, 1–88 (2016),
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

6. Gerl, A.: Modelling of a privacy language and efficient policy-based de-
identification. Thesis, Universität Passau (2020), https://nbn-resolving.org/

urn:nbn:de:bvb:739-opus4-7674

7. Hjerppe, K., Ruohonen, J., Leppänen, V.: Extracting LPL privacy policy purposes
from annotated web service source code. Software and Systems Modeling 22(1),
331–349 (2023)

8. Jürjens, J.: UMLsec: Extending UML for secure systems development. In: UML
2002 - The Unified Modeling Language: Model Engineering, Concepts, and Tools
5th International Conference Dresden, Germany, September 30–October 4, 2002
Proceedings. pp. 412–425. Springer (2002)

9. Kohnfelder, L., Grag, P.: The threats to our products. Tech. rep.,
Microsoft Corporation (2009), https://nbn-resolving.org/urn:nbn:de:hbz:

464-20210712-090625-4

10. Kunz, I., Weiss, K., Schneider, A., Banse, C.: Privacy Property Graph: Towards
automated privacy threat modeling via static graph-based analysis. Proceedings
on Privacy Enhancing Technologies 2, 171–187 (2023)

11. Leicht, J., Heisel, M.: P2BAC: Privacy policy based access control using P-
LPL. In: Mori, P., Lenzini, G., Furnell, S. (eds.) 9th International Conference
on Information Systems Security and Privacy. pp. 686–697. SciTePress (2023).
https://doi.org/10.5220/0011788500003405

12. Leicht, J., Heisel, M., Gerl, A.: PriPoCoG: Guiding policy authors to define GDPR-
compliant privacy policies. In: Trust, Privacy and Security in Digital Business:
19th International Conference, TrustBus 2022, Vienna, Austria, August 24, 2022,
Proceedings. pp. 1–16. Springer (2022)

13. Robles-González, A., Parra-Arnau, J., Forné, J.: A LINDDUN-based framework for
privacy threat analysis on identification and authentication processes. Computers
& Security 94, 101755 (2020)

14. Wang, X., Qin, X., Hosseini, M.B., Slavin, R., Breaux, T.D., Niu, J.: Guileak:
Tracing privacy policy claims on user input data for android applications. In: Pro-
ceedings of the 40th International Conference on Software Engineering. pp. 37–47
(2018)

https://doi.org/10.1007/978-3-642-48354-7_9
https://doi.org/10.1007/978-3-642-48354-7_9
https://doi.org/10.1007/978-3-642-48354-7_9
https://doi.org/10.1007/s00766-010-0115-7
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-7674
https://nbn-resolving.org/urn:nbn:de:bvb:739-opus4-7674
https://nbn-resolving.org/urn:nbn:de:hbz:464-20210712-090625-4
https://nbn-resolving.org/urn:nbn:de:hbz:464-20210712-090625-4
https://doi.org/10.5220/0011788500003405

	Creating Privacy Policies From Data-Flow Diagrams

